The post translational modification of key regulators of ATR signaling in DNA replication

来源: 发布时间:2021-05-13 17:05:58 浏览次数: 【字体:

Genome Instability & Disease volume 2pages92–101(2021)

Abstract

DNA replication is one of the most critical psychological process, which mainly consists of three steps: initiation, elongation, and termination. Precise regulation through all stages of DNA replication is essential for maintaining genome integrity in proliferating cells. During each cell cycle, the complete genetic information existing in the DNA needs to be duplicated and passed on to the daughter cells. The DNA replication machinery is confronted with many challenges and stresses owing to endogenous and exogenous facts that could harm the faithful duplication of the DNA. The abnormality of DNA replication could cause genomic instability and tumorigenesis. ATR is a master regulator of cells in response to DNA replication stress to safeguard genomic stability and prevent tumorigenesis. In the past years, the key functions of post-translational modification (PTM) in ATR signaling transduction has been explored. ATR signaling is complicatedly and tightly regulated by multiple PTMs, such as phosphorylation, acetylation, ubiquitination, SUMOylation and so on. Here, we summarize how the ATR signaling pathway is tightly regulated by PTM. Furthermore, we describe the critical roles of ATR signaling in DNA replication and safeguarding genomic stability. In the past years, the key functions of post-translational modification (PTM) in DNA replication has been explored. These findings benefit for us better understand the complicated mechanism of DNA replication signaling pathway.

The compositions and work model of ATR signaling in DNA replication stress

ATR signaling pathway is consisted by several key proteins as shown in Table1 (Awasthi et al., 2015; Blackford & Jackson, 2017; Maréchal & Zou, 2013; Yang, 2004). ATR (ATM and rad3-related), the central regulator of ATR signaling pathway, is one member of PI3K-Related Kinases (PIKKs) families, which are mainly consisted of five domains: HEAT repeat, FAT domain, kinase domain, PIKK regulatory domain(PRD) and FACT domain, as shown in Fig. 1. Other members of the PIKK family contain ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA–PK), homolog of Caenorhabditis elegans SMG-1 (SMG1) and mammalian target of rapamycin (mTOR,also known as FRAP). Since the PIKKs family share a highly conserved catalytic domain, their target motif is very similar. For example, ATR, ATM, SMG-1 and DNA-PK preferentially phosphorylate Ser and Thr residues followed by a Gln (S/T-Q motif) (Baretic, 2019; Cimprich & Cortez, 2008; Mordes et al., 2008). ATR is one of the most important master regulators in DNA replication, DNA repair, senescence and apoptosis. Compared to ATM, which is mainly activated by DNA double-strand breaks (DSBs), ATR is a much broader responder to various types of DNA damage, including DSBs and other multiple types of DNA damage that are implicated to DNA replication (Byun et al., 2005; Kumagai et al., 2004; Walter & Newport, 2000). It is found that the HEAT repeat domain of ATR is responsible for binding with ATRIP (ATR interacting protein, the partner of ATR) and the FAT domain that provides structural assistance to the kinase domain. The kinase domain contains PRD (PIKK regulatory domain), which is responsible with binding with ToPBP1 and FATC domain (Burrows & Elledge, 2008; Lovejoy & Cortez, 2009; Wang, 2017).

Table 1 The composition and function of ATR signaling pathwayFull size tableFig. 1figure1

Schematic of the functional domains of ATR. The ATR (homo) is consisted of 2644 amino acids and primarily divided into 5 domains, including HEAT repeat domain, FAT domain, Kinase domain, PIKK regulatory domain (PRD) and FATC domain. The HEAT domain is important for ATR binding to ATRIP

Full size image

Extensive studies have suggested that ATR is activated by multiple types of DNA damage, including telomere deprotection, DSB or agents that involved in DNA replication (Maréchal & Zou, 2013; Matsuoka, 2007), as shown in Fig. 2. Firstly, DNA damage or stalled replication forks generated ssDNA that is coated and protect by RPA, and then RPA directly binds to ATRIP which is a partner of ATR and recruits it to DNA damage sites. Hence, ATR-ATRIP complex are recruited to ssDNA (Maréchal, 2014; Maréchal & Zou, 2015; Wu, 2014; Zou & Elledge, 2003). Secondly, TopBP1 which is composed of several BRCT repeats domain (9 in mammals and Xenopus, 4 in yeast) is essential to full activation of ATR–ATRIP (Lee et al. 2007; Mordes et al., 2008). The BRCT repeat domains play a key role in recognition of phosphorylated factors (Glover et al., 2004; Yu et al., 2003). Moreover, the region between BRCT6 and BRCT7 of TopBP1 is responsible for inducing the ATR-ATRIP activation (Ohashi et al., 2014; Wardlaw et al., 2014). Additionally, the specific DNA structure including dsDNA-ssDNA junction derived from stalled replication forks or DSBs resection also activates ATR signaling pathway (Ma et al., 2020; Shiotani, 2013). Except recruiting the ATR-ATRIP complex to the DNA damage sites, RPA also brings the clamp loader RAD17-RFC to the junctions (Lee & Dunphy, 2010; Yang & Zou, 2006). Further, RAD17-RFC recruits the RAD9-HUS1-RAD1 clamp (9-1-1) to the junctions (Navadgi-Patil & Burgers, 2011). The N-terminal domain of RAD9 combined with HUS1 and RAD1 forms a heterotrimer, forming a ring-shaped structure similar to PCNA (Delacroix et al., 2007; Friedrich-Heineken, 2005). The C-terminus of RAD9 is phosphorylated at Ser387 and creates a binding site for BRCT1-2 domain of TopBP1, which domain is essential for recruiting TopBP1 to dsDNA-ssDNA junctions. Finally, TopBP1 interacts with and activates ATR-ATRIP complexes, further leading to the activation and amplification of ATR-CHK1 signaling pathway (Day, 2018; Delacroix et al., 2007; Liu, 2014). In addition, it is reported that ETAA1, an RPA binding protein, is able to directly activate ATR independently of TopBP1 (Haahr, 2016). It is shown that CLASPIN functions as an adaptor between ATR-IP and CHK1, and works as a key regulator involving in ATR mediated phosphorylation and activation of CHK1 (Kumagai & Dunphy, 2000; Liu, 2006). Once activated, ATR phosphorylates multiple downstream effects, especially CHK1, facilitating ATR-CHK1 pathway to exert several key functions to promote replication fork stability and prevent genome instability.

Fig. 2figure2

Model of ATR-CHK1 pathway activation by primed ssDNA during replication stress. ATR-CHK1 pathway is activated in a multi-step and multi-protein participation process. Firstly, RPA binds to and protect ssDNA. Then, ATR-ATRIP is recruited to ssDNA by RPA. Besides, RPA also promotes the recruitment of RAD17-Rfc2-5 clamp loader to junctions between ssDNA and dsDNA and the loading of 9-1-1 complex (RAD9-RAD1-HUS1) checkpoint onto dsDNA. Further, TOPBP1 is recruited to dsDNA by 9-1-1 complex. Then, ATR is activated by TOPBP1 via its ATR activation domain (AAD). Red color represents ATR activation status. The activated ATR further phosphorylates and activates CHK1 with the help of Claspin, resulting in ATR-CHK1 pathway activation to execute multiple functions to promote replication fork stability and so on

Full size image

The ubiquitination and deubiquitination in ATR-CHK1 signaling pathway

Ubiquitination is one of extensively investigated PTMs, which are involved in regulating multiple physiological processes in eukaryotes, including DNA damage response, proliferation, tumorigenesis and cell cycle (Mansour, 2018; Ulrich & Walden, 2010). This PTM is usually mediated by three sequential steps: activation, conjugation, and ligation, which are catalyzed by ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3) enzymes, respectively. Ubiquitin, a highly conserved small protein composed of 76 amino acids, is covalently attached to lysine residues of substrate proteins (Mansour, 2018). Ubiquitination is firstly identified as a signal to induce substrates degradation by ubiquitin-proteasomal degradation system. Except for the protein degradation, ubiquitination also plays a key role in signal transduction (Swatek & Komander, 2016; Wilkinson, 2000). Ubiquitination is reported to regulate ATR-CHK1 signaling pathway involving in DNA replication (Cartel & Didier, 2020; Shiotani & Zou, 2009; Yu et al., 2020; Bennett & Clarke, 2006; Ghosh & Saha, 2012; Mirsanaye et al., 2021).

RPA, a key player in ATR activation, is ubiquitinated by PRP19 and RFWD3, resulting in promoting ATR activation and homologous recombination repair (HR) upon DNA damage (Dubois, 2017; Elia, 2015). In addition, RPA ubiquitinated by RFWD3 also facilitates the removal of RPA from DNA damage site and repair at Stalled Replication Forks (Elia, 2015; Inano, 2017). The E3 ligase, HUWE1 was reported to mediate ubiquitination of CHK1 and induce its degradation by ubiquitin–proteasome system (Cassidy et al., 2020). Moreover, two Cullin RING Ligase (CRL) complexes, E3 ligases regulate the CHK1 protein level, including the SKP1-Cullin1(Cul1)-Fbx complex, which mainly ubiquitylates CHK1 in the nucleus, whereas the CDT2-Cullin4A(Cul4A)-DDB1 complex primarily ubiquitylates CHK1 in the cytoplasm during replication stress (Cartel & Didier, 2020; Cassidy et al., 2020; Zheng et al., 2016). Meanwhile, TRAF4-mediated ubiquitination of CHK1 at K132 is essential for CHK1 phosphorylation and is activated by ATR (Yu, 2020). Moreover, BTG3-mediated CHK1 K63-linked ubiquitination regulates the chromatin loading and activity of CHK1 (Cheng et al., 2013). Interestingly, HDAC6, a member of Histone deacetylases (HDAC), potentiates E3 ligase activity and is able to promote CHK1 ubiquitination, resulting in its degradation (Moses, 2020).

The E3 ligase, HERC2 is a component of the DNA replication fork complex (Izawa, 2011). It participates in regulating replication stress by USP20-CLASPIN axis (Yuan, 2014; Zhu et al., 2014). Moreover, HERC2-mediated ubiquitination of RPA regulates its phosphorylation by ATR and ubiquitin-proteasomal degradation (Wu, 2018). Ubiquitination of CLASPIN by BRCA1 regulates its degradation upon topoisomerase 1 inhibition (Sato, 2012). APC/C Cdh1 system-mediated polyubiquitylation of CLASPIN facilitates its degradation in G1 phase (Bassermann, 2008). In addition, PLK1-mediated phosphorylation of CLASPIN promotes its ubiquitination by SCF-bTrCP ubiquitin ligase, resulting in its proteasome-dependent degradation (Peschiaroli, 2006). In addition, Cdh1/APC system mediates Rad17 degradation via ubiquitin–proteasome causing the termination of checkpoint signaling and the recovery from genotoxic stress (Zhang, 2010). 9-1-1 complex is monoubiquitinated at Lys197 of the Rad9 subunit by the Rad6/Rad18 complex, which in turn facilitates the activation of 9-1-1 complex after DNA damage (Fu, 2008). hHYD (also known as UBR5), a HECT-domain ubiquitin ligase, binds with TopBP1 via its BRCT domain and ubiquitinates TopBP1, resulting in TopBP1 instability. Moreover, upon DNA damage, TopBP1 is phosphorylated, which in turn inhibits its ubiquitination (Honda, 2002).

Deubiquitination is the reverse reaction of ubiquitination, is mediated by multiple deubiquitinases, which are responsible for removing ubiquitin from the substrates, and plays a vital role in the regulation of protein stability, activity, and its subcellular localization (Farshi, 2015; Reyes-Turcu et al., 2009; Sun, Liu, et al., 2020). So far, there has been about 80 deubiqutinases identified and mainly classified in 5 distinct families, including ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), ovarian tumor proteases (OTUs), Machado–Joseph disease (MJD) protein domain proteases, and JAMM motif zinc metalloproteases (Sun, Shi, et al., 2020; Young et al., 2019). Similar to ubiquitination, deubiquitination regulates various cellular processes, including DNA damage response, cell cycle, apoptosis, DNA replication, and tumorigenesis (Brinkmann et al., 2015).

CLASPIN is a key player in ATR-CHK1 signaling and DNA replication, and is regulated by several deubiquitinases. USP28 antagonizes the APC/C Cdh1-mediated degradation of CLASPIN (Zhang et al., 2006). Additionally, USP7 and USP29 stabilize CLASPIN and reverse its degradation mediated by SCF-bTrCP (Faustrup et al., 2009; Martín, 2015). Intriguingly, our previous study and Xu lab’s work also uncovered that USP20 functions as a DUB for CLASPIN, maintaining its stability upon replication stress (Yuan, 2014; Zhu et al., 2014). USP9X deubiquitinates and stabilizes CLASPIN in an S-phase-specific manner and maintains genomic stability during DNA replication (McGarry, 2016). Intriguingly, USP20 also deubiquitinates and stabilizes Rad17 following DNA damage, resulting in replication fork stability (Shanmugam, 2014).

CHK1 is regulated by multiple deubiquitinases. USP3 removes the K63-linked ubiquitination from CHK1, which facilitates its release from chromatin. USP37 could cleave the poly-ubiquitination chains of CHK1 and increase CHK1 protein stability, which in turn facilitates cellular response to replication stress (2019). Interestingly, in addition to CLAPIN, USP7 deubiquitinates and stabilizes CHK1 (Alonso-de Vega et al., 2014). Even though RPA and 9-1-1 were reported to be ubiquitinated as mentioned above, the deubiquitinases for them remain to be explored. Taken together, the ubiquitination and deubiquitination of key regulators in the ATR-CHK1 pathway and have vital roles in the regulation of ATR signaling transduction and cellular response to DNA replication stress.

The phosphorylation in ATR-CHK1 signaling pathway

Phosphorylation, which is the most-explored PTM, plays key roles in regulating various physiological processes, including enzymatic activities, protein localization, DNA replication, gene expression, DNA damage response, and signal transduction (Ardito et al., 2017). ATR, the master of ATR-CHK1 signaling, is a kinase (Nam & Cortez, 2011). Autophosphorylation is essential for ATR activation and ATR signaling transduction, which plays an important role in constructing of a signal network in DNA replication stress to maintain replication fork stability.

Upon replication stress, RPA-coated ssDNA recruits ATR-ATRIP complex to sites of DNA damage and initiates ATR activation. Besides that, the full activation of ATR needs to trigger autophosphorylation at Thr1989 which creates a binding site for BRCT domains 7 and 8 of TopBP1 and promoting ATR substrate recognition (Liu, 2011; Nam, 2011). Hence, ATR autophosphorylation is crucial for its full activation. CHK1, a well-known substrate of ATR, is not only a key player for the checkpoint response, but also vital for the stability of DNA replication forks. Upon DNA damage, CHK1 is phosphorylated by ATR at Ser317 and Ser345 and activated to regulate cell cycle progression, maintain replication fork stability and promote faithful chromosome segregation (Goto et al., 2015; Kabeche et al., 2018). In addition, CLASPIN is phosphorylated at Thr916 and Ser945 in response to DNA replication stress, which is possibly mediated by ATR (Bennett et al., 2008). The phosphorylation is crucial to establish binding between CLAPIN and CHK1 (Bennett et al., 2008; Clarke & Clarke, 2005). Besides that, CDK7-mediated phosphorylation of CLASPIN is essential for the activation of the ATR–Chk1 signaling pathway (Yang et al., 2019).

RPA is a heterotrimeric complex composed of three subunits, RPA70, RPA32, and RPA14 (Feldkamp et al., 2014). Accumulating research has shown that the phosphorylation of RPA32 plays a vital role in RPA complex functions. RPA32 is phosphorylated on multiple N-terminal residues during replication stress (Oakley, 2009). Unperturbed, RPA32 participates in the regulation of mitosis and G1/S phase transition via its phosphorylation by cyclin-dependent kinase 1 (CDK1)/cyclin B and CDK2/cyclin A, respectively (Anantha et al., 2007). Moreover, ATR phosphorylates RPA32 at Ser33 in response to DNA damage and replication stress, which is the key and initial step for subsequent phosphorylation at Ser29 and Ser4/Ser8 phosphorylation by DNA-PKcs (Ashley, 2014; Glanzer, 2014; Shiotani, 2013).

Interestingly, ATRIP, the partner of ATR, is phosphorylated at Ser68 and Ser72 by ATR in response to genotoxic stimuli (Itakura, 2004). But, the phosphorylation is dispensable for ATR-mediated signaling. Rad9, a key component of heterotrimeric complex (the 9-1-1 complex), is phosphorylated at Ser272 by ATR and ATM in response to DNA damage, which is indispensable for CHK1 activation (Roos-Mattjus, 20022003). Moreover, the Tousled-like kinase 1B (TLK1B) indirectly phosphorylates Rad9 at S328, which causes its release from stalled replication forks, leading to the instability of stalled replication forks and prolonged activation of the S-phase checkpoint (Benedetti, 2012). Rad17, a substrate of ATR, is phosphorylated at Ser635 and Ser645 upon replication interference, which is essential for ATR signaling and replication (Post, 2001; Wang, 2006). TopBP1 is directly phosphorylated by ATM at several residues, including, Ser405, Ser476, Ser1051, Ser766 and Thr975, which phosphorylation is required for cell survival in response to replication stress (Yamane et al., 2002).

The acetylation and deacetylation in ATR-CHK1 signaling pathway

Acetylation is a reversible and dynamic process and is controlled by several deacetylases and acetyltransferases. Accumulating research has shown acetylation is an important PTM exerting vital function in multiple processes, including DNA damage response, replication stress, cell cycle checkpoint, and transcription (Glozak et al., 2005; Xia et al., 2020). p300, an acetyltransferase, acetylates RPA resulting in increasing its binding affinity to ssDNA (Surendran et al., 2016). p300 is also reported as an acetyltransferase for TopBP1, which regulates its activity and function (Liu, 2014). Moreover, acetyltransferases, GCN5 and PCAF mediated RPA70 acetylation at lysine 163, which is important for nucleotide excision repair (NER) in response to UV irradiation (He et al., 2017).

Sirtuin 2 (SIRT2) interacts with and deacetylates ATRIP at Lys32 in response to replication stress, which in turn facilitates the recruitment of ATRIP to chromatin and ATR activation (Zhang, 2016). SIRT1, the mammalian homolog of yeast Sir2, is a member of the sirtuin family of type III histone deacetylases and deacetylates TopBP1, which in turn participates in regulation of DNA replication fork initiation and the intra-S-phase cell cycle checkpoint (Wang, 2014). On the other hand, Sirt1 deacetylates TopBP1 upon glucose deprivation, resulting in TopBP1-Treslin disassociation and DNA replication inhibition (Liu, 2014). In contrast, SIRT1 activity is inhibited upon genotoxic stress, resulting in an increase in TopBP1 acetylation, which is vital for the TopBP1-Rad9 interaction and activation of the ATR-Chk1 pathway. Mechanistically, the acetylation of TopBP1 induces its conformation change, which promotes its interaction with distinct partners in DNA replication and checkpoint activation (Liu, 2014). HDAC6, a member of Histone deacetylases (HDACs), antagonize GCN5 and PCAF mediated RPA70 acetylation (Zhao, 2017).

The SUMOylation and deSUMOylation in ATR-CHK1 signaling pathway

SUMOylation is achieved via the small ubiquitin-like modifier (SUMO) family of proteins. SUMO is conjugated to lysine residues of substrates by SUMO-specific E1, E2, and E3 (Yang, 2017). Like deubiquitination, SUMOylation is also a reversible dynamic process. The SUMO modification is removed by sentrin/SUMO-specific proteases (SENPs), which removal reaction is called deSUMOylation (Nayak & Müller, 2014). SUMOylation plays a vital role in regulating multiple process, including protein localization, interaction, transcription, DNA repair, and DNA replication (Celen & Sahin, 2020).

ATRIP is SUMOylated at K234 and K289, which SUMOylation facilitates its binding to multiple protein including ATR, RPA70, TopBP1, and the MRE11–RAD50–NBS1 complex (Wu, 2014; Zhou, 2020). Moreover, RPA70 is SUMOylated at Lys449 and Lys577 under replication-mediated DSBs, which results in recruitment of Rad51 to promote DNA damage repair (Dou et al., 2010). In addition, TopBP1 is highly SUMOylated in response to DNA inter-strand crosslinking damage, which SUMOylation is important in regulation of replication stress and prohibiting fork breakage to protect DNA integrity (Munk, 2017).

SENP6, a sentrin/SUMO-specific protease (SENP), is responsible for removing SUMOs from RPA70 (Li, 2018). In addition, SENP5 is able to bind to ATRIP and facilitate ATRIP deSUMOylation (Jin et al., 2016).

The methylation and crotonylation in ATR-CHK1 signaling pathway

Accumulating studies suggest that the methylation of non-histone proteins has emerged as extensive PTM, which plays as a vital regulator of multiple cellular processes, including cell survival, DNA damage response, transcription, and DNA replication (Blasi, 2021; Hamamoto et al., 2015; Rodríguez-Paredes & Lyko, 2019). Rad9 is methylated by protein arginine methyltransferase 5 (PRMT5), which plays a critical role in regulation of Chk1 activation and maintaining genome integrity (He, 2011). Crotonylation, a novel PTM, is discovered in recent year (Wan et al., 2019). RPA70 is reported to be crotonylated at Lys88, Lys379 and Lys595 in response to DNA damage, which in turn promotes its bind with ssDNA and HR factors (Yu, 2020).

Conclusions

Extensive and inspiring research of PTM of the key regulators in ATR signaling have been published (Yazinski & Zou, 2016). Herein, we simply summarized and listed ubiquitination, phosphorylation, acetylation, methylation, crotonylation, and some of their inverse processes, which are related to ATR pathway and DNA replication stress. We hope these will be benefit for us to understand the progress of this field. At the same time, we are looking forward to more in-depth and systematic research in this field since there are still a lot of questions remaining to be answered. For example, as we know most of the PTMs are a reversible and dynamic processes, however, some of these reverse processes function in DNA replication stress are still unclear. Hence, further studies need to be carried out to focusing on these regulations. In addition, these PTMs occurring seem to be spatiotemporal specific and need to be very accurate (Dantuma & Attikum, 2016), so how do cells coordinate these regulations and how they work together to make cells better cope with the DNA replication stress and safeguard genomic integrity? Further efforts need to be done to clarify the interplay among these modifiers and their contribution during DNA replication stress.

Since ATR-CHK1 signaling plays an important role in maintaining genome stability, prevent tumorigenesis and chemo/radio-resistance (Smith et al. 2010; Yazinski & Zou, 2016), targeting ATR-CHK1 signaling has been identified as an effective approach to kill cancer (Primo & Teixeira, 2019; Sørensen & Syljuåsen, 2012; Wilhelm et al., 2020). Several CHK1 inhibitors and ATR inhibitors have been developed to treat cancer (Heo, 2019; Rundle et al., 2017). Better understanding the molecular mechanism of activation of ATR-CHK1 signaling would be of valuable importance for exploring novel therapeutic target. With the study progress of PTMs of ATR signaling, it provides additional choices and targets for cancer therapy as well as biomarkers for cancer diagnosis. In addition to targeting these key components of ATR-CHK1 pathway themselves, we can also target these key proteins that mediate PTMs of ATR signaling. Inspiringly, owing to great progress had achieved in technologies and other tools, including bioinformatics workflow and proteomics, the possibility is increases to identify not only novel PTMs but also the known PTMs on previously unrecognized modified proteins in ATR signaling pathway, which will inspire us to identify novel target for disease related to aberrant regulation of DNA replication and ATR pathway.

References

  1. Alonso-de Vega, I., Martín, Y., & Smits, V. A. (2014). USP7 controls Chk1 protein stability by direct deubiquitination. Cell Cycle (Georgetown, Tex.), 13, 3921–3926. https://doi.org/10.4161/15384101.2014.973324

    CAS Article Google Scholar 

  2. Anantha, R. W., Vassin, V. M., & Borowiec, J. A. (2007). Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. The Journal of Biological Chemistry, 282, 35910–35923. https://doi.org/10.1074/jbc.M704645200

    CAS Article PubMed Google Scholar 

  3. Ardito, F., Giuliani, M., Perrone, D., Troiano, G., & Lo Muzio, L. (2017). The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). International Journal of Molecular Medicine, 40, 271–280. https://doi.org/10.3892/ijmm.2017.3036

    CAS Article PubMed PubMed Central Google Scholar 

  4. Ashley, A. K., et al. (2014). DNA-PK phosphorylation of RPA32 Ser4/Ser8 regulates replication stress checkpoint activation, fork restart, homologous recombination and mitotic catastrophe. DNA Repair, 21, 131–139. https://doi.org/10.1016/j.dnarep.2014.04.008

    CAS Article PubMed PubMed Central Google Scholar 

  5. Awasthi, P., Foiani, M., & Kumar, A. (2015). ATM and ATR signaling at a glance. Journal of Cell Science, 128, 4255–4262. https://doi.org/10.1242/jcs.169730

    CAS Article PubMed Google Scholar 

  6. Baretic, D., et al. (2019). Structural insights into the critical DNA damage sensors DNA-PKcs, ATM and ATR. Progress in Biophysics and Molecular Biology, 147, 4–16. https://doi.org/10.1016/j.pbiomolbio.2019.06.003

    CAS Article PubMed Google Scholar 

  7. Bassermann, F., et al. (2008). The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell, 134, 256–267. https://doi.org/10.1016/j.cell.2008.05.043

    CAS Article PubMed PubMed Central Google Scholar 

  8. Bennett, L. N. & Clarke, P. R. (2006). Regulation of Claspin degradation by the ubiquitin-proteosome pathway during the cell cycle and in response to ATR-dependent checkpoint activation. FEBS Letters, 580, 4176–4181. https://doi.org/10.1016/j.febslet.2006.06.071

  9. Bennett, L. N., Larkin, C., Gillespie, D. A., & Clarke, P. R. (2008). Claspin is phosphorylated in the Chk1-binding domain by a kinase distinct from Chk1. Biochemical and Biophysical Research Communications, 369, 973–976. https://doi.org/10.1016/j.bbrc.2008.02.154

    CAS Article PubMed Google Scholar 

  10. Blackford, A. N., & Jackson, S. P. (2017). ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Molecular Cell, 66, 801–817. https://doi.org/10.1016/j.molcel.2017.05.015

    CAS Article PubMed Google Scholar 

  11. Brinkmann, K., Schell, M., Hoppe, T., & Kashkar, H. (2015). Regulation of the DNA damage response by ubiquitin conjugation. Frontiers in Genetics, 6, 98. https://doi.org/10.3389/fgene.2015.00098

    CAS Article PubMed PubMed Central Google Scholar 

  12. Burrows, A. E., & Elledge, S. J. (2008). How ATR turns on: TopBP1 goes on ATRIP with ATR. Genes & Development, 22, 1416–1421. https://doi.org/10.1101/gad.1685108

    CAS Article Google Scholar 

  13. Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C., & Cimprich, K. A. (2005). Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes & Development, 19, 1040–1052. https://doi.org/10.1101/gad.1301205

    CAS Article Google Scholar 

  14. Cartel, M., & Didier, C. (2020). Regulation of CHK1 by the ubiquitin-proteasome system. The FEBS Journal, 287, 1982–1984. https://doi.org/10.1111/febs.15173

    CAS Article PubMed Google Scholar 

  15. Cassidy, K. B., Bang, S., Kurokawa, M., & Gerber, S. A. (2020). Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. The FEBS Journal, 287, 1985–1999. https://doi.org/10.1111/febs.15132

    CAS Article PubMed Google Scholar 

  16. Celen, A. B., & Sahin, U. (2020). Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. The FEBS Journal, 287, 3110–3140. https://doi.org/10.1111/febs.15319

    CAS Article PubMed Google Scholar 

  17. Cheng, Y. C., Lin, T. Y., & Shieh, S. Y. (2013). Candidate tumor suppressor BTG3 maintains genomic stability by promoting Lys63-linked ubiquitination and activation of the checkpoint kinase CHK1. Proceedings of the National Academy of Sciences of the United States of America, 110, 5993–5998. https://doi.org/10.1073/pnas.1220635110

    CAS Article PubMed PubMed Central Google Scholar 

  18. Cimprich, K. A., & Cortez, D. (2008). ATR: An essential regulator of genome integrity. Nature Reviews Molecular Cell Biology, 9, 616–627. https://doi.org/10.1038/nrm2450

    CAS Article PubMed PubMed Central Google Scholar 

  19. Clarke, C. A., & Clarke, P. R. (2005). DNA-dependent phosphorylation of Chk1 and Claspin in a human cell-free system. The Biochemical Journal, 388, 705–712. https://doi.org/10.1042/bj20041966

    CAS Article PubMed PubMed Central Google Scholar 

  20. Dantuma, N. P., & van Attikum, H. (2016). Spatiotemporal regulation of posttranslational modifications in the DNA damage response. The EMBO Journal, 35, 6–23. https://doi.org/10.15252/embj.201592595

    CAS Article PubMed Google Scholar 

  21. Day, M., et al. (2018). BRCT domains of the DNA damage checkpoint proteins TOPBP1/Rad4 display distinct specificities for phosphopeptide ligands. eLife. https://doi.org/10.7554/eLife.39979

    Article PubMed PubMed Central Google Scholar 

  22. De Benedetti, A. (2012). The tousled-like kinases as guardians of genome integrity. ISRN Molecular Biology, 2012, 627596. https://doi.org/10.5402/2012/627596

    CAS Article PubMed PubMed Central Google Scholar 

  23. Delacroix, S., Wagner, J. M., Kobayashi, M., Yamamoto, K., & Karnitz, L. M. (2007). The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes & Development, 21, 1472–1477. https://doi.org/10.1101/gad.1547007

    CAS Article Google Scholar 

  24. Di Blasi, R., et al. (2021). Non-histone protein methylation: biological significance and bioengineering potential. ACS Chemical Biologyhttps://doi.org/10.1021/acschembio.0c00771

    Article PubMed Google Scholar 

  25. Dou, H., Huang, C., Singh, M., Carpenter, P. B., & Yeh, E. T. (2010). Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Molecular Cell, 39, 333–345. https://doi.org/10.1016/j.molcel.2010.07.021

    CAS Article PubMed PubMed Central Google Scholar 

  26. Dubois, J. C., et al. (2017). A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination. Nucleic Acids Research, 45, 8859–8872. https://doi.org/10.1093/nar/gkx571

    CAS Article PubMed PubMed Central Google Scholar 

  27. Elia, A. E., et al. (2015). RFWD3-dependent ubiquitination of RPA regulates repair at stalled replication forks. Molecular Cell, 60, 280–293. https://doi.org/10.1016/j.molcel.2015.09.011

    CAS Article PubMed PubMed Central Google Scholar 

  28. Farshi, P., et al. (2015). Deubiquitinases (DUBs) and DUB inhibitors: A patent review. Expert Opinion on Therapeutic Patents, 25, 1191–1208. https://doi.org/10.1517/13543776.2015.1056737

    CAS Article PubMed PubMed Central Google Scholar 

  29. Faustrup, H., Bekker-Jensen, S., Bartek, J., Lukas, J., & Mailand, N. (2009). USP7 counteracts SCFbetaTrCP- but not APCCdh1-mediated proteolysis of Claspin. The Journal of Cell Biology, 184, 13–19. https://doi.org/10.1083/jcb.200807137

    CAS Article PubMed PubMed Central Google Scholar 

  30. Feldkamp, M. D., Mason, A. C., Eichman, B. F., & Chazin, W. J. (2014). Structural analysis of replication protein A recruitment of the DNA damage response protein SMARCAL1. Biochemistry, 53, 3052–3061. https://doi.org/10.1021/bi500252w

    CAS Article PubMed PubMed Central Google Scholar 

  31. Friedrich-Heineken, E., et al. (2005). The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate flap endonuclease 1 activity. Journal of Molecular Biology, 353, 980–989. https://doi.org/10.1016/j.jmb.2005.09.018

    CAS Article PubMed Google Scholar 

  32. Fu, Y., et al. (2008). Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell, 133, 601–611. https://doi.org/10.1016/j.cell.2008.02.050

    CAS Article PubMed Google Scholar 

  33. Ghosh, S. & Saha, T. (2012). Central role of ubiquitination in genome maintenance: DNA replication and damage repair. ISRN Molecular Biology2012, 146748. https://doi.org/10.5402/2012/146748

  34. Glanzer, J. G., et al. (2014). RPA inhibition increases replication stress and suppresses tumor growth. Cancer Research, 74, 5165–5172. https://doi.org/10.1158/0008-5472.Can-14-0306

    CAS Article PubMed PubMed Central Google Scholar 

  35. Glover, J. N., Williams, R. S., & Lee, M. S. (2004). Interactions between BRCT repeats and phosphoproteins: Tangled up in two. Trends in Biochemical Sciences, 29, 579–585. https://doi.org/10.1016/j.tibs.2004.09.010

    CAS Article PubMed Google Scholar 

  36. Glozak, M. A., Sengupta, N., Zhang, X., & Seto, E. (2005). Acetylation and deacetylation of non-histone proteins. Gene, 363, 15–23. https://doi.org/10.1016/j.gene.2005.09.010

    CAS Article PubMed Google Scholar 

  37. Goto, H., Kasahara, K., & Inagaki, M. (2015). Novel insights into Chk1 regulation by phosphorylation. Cell Structure and Function, 40, 43–50. https://doi.org/10.1247/csf.14017

    CAS Article PubMed Google Scholar 

  38. Haahr, P., et al. (2016). Activation of the ATR kinase by the RPA-binding protein ETAA1. Nature Cell Biology, 18, 1196–1207. https://doi.org/10.1038/ncb3422

    CAS Article PubMed Google Scholar 

  39. Hamamoto, R., Saloura, V., & Nakamura, Y. (2015). Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nature Reviews. Cancer, 15, 110–124. https://doi.org/10.1038/nrc3884

    CAS Article PubMed Google Scholar 

  40. He, H., Wang, J., & Liu, T. (2017). UV-Induced RPA1 acetylation promotes nucleotide excision repair. Cell Reports, 20, 2010–2025. https://doi.org/10.1016/j.celrep.2017.08.016

    CAS Article PubMed Google Scholar 

  41. He, W., et al. (2011). A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage. Nucleic Acids Research, 39, 4719–4727. https://doi.org/10.1093/nar/gkq1264

    CAS Article PubMed PubMed Central Google Scholar 

  42. Heo, K. S. (2019). Regulation of post-translational modification in breast cancer treatment. BMB Reports, 52, 113–118. https://doi.org/10.5483/BMBRep.2019.52.2.017

    CAS Article PubMed PubMed Central Google Scholar 

  43. Honda, Y., et al. (2002). Cooperation of HECT-domain ubiquitin ligase hHYD and DNA topoisomerase II-binding protein for DNA damage response. The Journal of Biological Chemistry, 277, 3599–3605. https://doi.org/10.1074/jbc.M104347200

    CAS Article PubMed Google Scholar 

  44. Inano, S., et al. (2017). RFWD3-mediated ubiquitination promotes timely removal of both RPA and RAD51 from DNA damage sites to facilitate homologous recombination. Molecular Cell, 66, 622-634.e628. https://doi.org/10.1016/j.molcel.2017.04.022

    CAS Article PubMed Google Scholar 

  45. Itakura, E., et al. (2004). ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochemical and Biophysical Research Communications, 323, 1197–1202. https://doi.org/10.1016/j.bbrc.2004.08.228

    CAS Article PubMed Google Scholar 

  46. Izawa, N., et al. (2011). HERC2 Interacts with Claspin and regulates DNA origin firing and replication fork progression. Cancer Research, 71, 5621–5625. https://doi.org/10.1158/0008-5472.Can-11-0385

    CAS Article PubMed Google Scholar 

  47. Jin, Z. L., Pei, H., Xu, Y. H., Yu, J., & Deng, T. (2016). The SUMO-specific protease SENP5 controls DNA damage response and promotes tumorigenesis in hepatocellular carcinoma. European Review for Medical and Pharmacological Sciences, 20, 3566–3573.

    PubMed Google Scholar 

  48. Kabeche, L., Nguyen, H. D., Buisson, R., & Zou, L. (2018). A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science (New York, N.Y.), 359, 108–114. https://doi.org/10.1126/science.aan6490

    CAS Article Google Scholar 

  49. Kumagai, A., & Dunphy, W. G. (2000). Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Molecular Cell, 6, 839–849. https://doi.org/10.1016/s1097-2765(05)00092-4

    CAS Article PubMed Google Scholar 

  50. Kumagai, A., Kim, S. M., & Dunphy, W. G. (2004). Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. The Journal of Biological Chemistry, 279, 49599–49608. https://doi.org/10.1074/jbc.M408353200

    CAS Article PubMed Google Scholar 

  51. Lee, J., & Dunphy, W. G. (2010). Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks. Molecular Biology of the Cell, 21, 926–935. https://doi.org/10.1091/mbc.e09-11-0958

    CAS Article PubMed PubMed Central Google Scholar 

  52. Lee, J., Kumagai, A., & Dunphy, W. G. (2007). The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. The Journal of Biological Chemistry, 282, 28036–28044. https://doi.org/10.1074/jbc.M704635200

    CAS Article PubMed Google Scholar 

  53. Li, J., et al. (2018). Desumoylase SENP6 maintains osteochondroprogenitor homeostasis by suppressing the p53 pathway. Nature Communications, 9, 143. https://doi.org/10.1038/s41467-017-02413-3

    CAS Article PubMed PubMed Central Google Scholar 

  54. Liu, S., et al. (2006). Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Molecular and Cellular Biology, 26, 6056–6064. https://doi.org/10.1128/mcb.00492-06

    CAS Article PubMed PubMed Central Google Scholar 

  55. Liu, S., et al. (2011). ATR autophosphorylation as a molecular switch for checkpoint activation. Molecular Cell, 43, 192–202. https://doi.org/10.1016/j.molcel.2011.06.019

    CAS Article PubMed PubMed Central Google Scholar 

  56. Liu, T., et al. (2014). A divergent role of the SIRT1-TopBP1 axis in regulating metabolic checkpoint and DNA damage checkpoint. Molecular Cell, 56, 681–695. https://doi.org/10.1016/j.molcel.2014.10.007

    CAS Article PubMed PubMed Central Google Scholar 

  57. Lovejoy, C. A., & Cortez, D. (2009). Common mechanisms of PIKK regulation. DNA Repair, 8, 1004–1008. https://doi.org/10.1016/j.dnarep.2009.04.006

    CAS Article PubMed PubMed Central Google Scholar 

  58. Ma, M., Rodriguez, A., & Sugimoto, K. (2020). Activation of ATR-related protein kinase upon DNA damage recognition. Current Genetics, 66, 327–333. https://doi.org/10.1007/s00294-019-01039-w

    CAS Article PubMed Google Scholar 

  59. Mansour, M. A. (2018). Ubiquitination: Friend and foe in cancer. The International Journal of Biochemistry & Cell Biology, 101, 80–93. https://doi.org/10.1016/j.biocel.2018.06.001

    CAS Article Google Scholar 

  60. Maréchal, A., et al. (2014). PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Molecular Cell, 53, 235–246. https://doi.org/10.1016/j.molcel.2013.11.002

    CAS Article PubMed Google Scholar 

  61. Maréchal, A., & Zou, L. (2013). DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspectives in Biology. https://doi.org/10.1101/cshperspect.a012716

    Article PubMed PubMed Central Google Scholar 

  62. Maréchal, A., & Zou, L. (2015). RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Research, 25, 9–23. https://doi.org/10.1038/cr.2014.147

    CAS Article PubMed Google Scholar 

  63. Martín, Y., et al. (2015). USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. Oncogene, 34, 1058–1063. https://doi.org/10.1038/onc.2014.38

    CAS Article PubMed Google Scholar 

  64. Matsuoka, S., et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science (New York, N.Y.), 316, 1160–1166. https://doi.org/10.1126/science.1140321

    CAS Article Google Scholar 

  65. McGarry, E., et al. (2016). The Deubiquitinase USP9X maintains DNA replication fork stability and DNA damage checkpoint responses by regulating CLASPIN during S-phase. Cancer Research, 76, 2384–2393. https://doi.org/10.1158/0008-5472.Can-15-2890

    CAS Article PubMed Google Scholar 

  66. Mirsanaye, A. S., Typas, D. & Mailand, N. (2021). Ubiquitylation at stressed replication forks: mechanisms and functions. Trends in Cell Biologyhttps://doi.org/10.1016/j.tcb.2021.01.008

  67. Mordes, D. A., Glick, G. G., Zhao, R., & Cortez, D. (2008). TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes & Development, 22, 1478–1489. https://doi.org/10.1101/gad.1666208

    CAS Article Google Scholar 

  68. Moses, N., et al. (2020). HDAC6 regulates radiosensitivity of non-small cell lung cancer by promoting degradation of Chk1. Cellshttps://doi.org/10.3390/cells9102237

    Article PubMed PubMed Central Google Scholar 

  69. Munk, S., et al. (2017). Proteomics reveals global regulation of protein SUMOylation by ATM and ATR kinases during replication stress. Cell Reports, 21, 546–558. https://doi.org/10.1016/j.celrep.2017.09.059

    CAS Article PubMed Google Scholar 

  70. Nam, E. A., et al. (2011). Thr-1989 phosphorylation is a marker of active ataxia telangiectasia-mutated and Rad3-related (ATR) kinase. The Journal of Biological Chemistry, 286, 28707–28714. https://doi.org/10.1074/jbc.M111.248914

    CAS Article PubMed PubMed Central Google Scholar 

  71. Nam, E. A., & Cortez, D. (2011). ATR signalling: More than meeting at the fork. The Biochemical Journal, 436, 527–536. https://doi.org/10.1042/bj20102162

    CAS Article PubMed PubMed Central Google Scholar 

  72. Navadgi-Patil, V. M., & Burgers, P. M. (2011). Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase. Biochemical Society Transactions, 39, 600–605. https://doi.org/10.1042/bst0390600

    CAS Article PubMed Google Scholar 

  73. Nayak, A., & Müller, S. (2014). SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biology, 15, 422. https://doi.org/10.1186/s13059-014-0422-2

    Article PubMed PubMed Central Google Scholar 

  74. Oakley, G. G., et al. (2009). Physical interaction between replication protein A (RPA) and MRN: Involvement of RPA2 phosphorylation and the N-terminus of RPA1. Biochemistry, 48, 7473–7481. https://doi.org/10.1021/bi900694p

    CAS Article PubMed PubMed Central Google Scholar 

  75. Ohashi, E., Takeishi, Y., Ueda, S., & Tsurimoto, T. (2014). Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage. DNA Repair, 21, 1–11. https://doi.org/10.1016/j.dnarep.2014.05.001

    CAS Article PubMed Google Scholar 

  76. Peschiaroli, A., et al. (2006). SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Molecular Cell, 23, 319–329. https://doi.org/10.1016/j.molcel.2006.06.013

    CAS Article PubMed Google Scholar 

  77. Post, S., et al. (2001). Phosphorylation of serines 635 and 645 of human Rad17 is cell cycle regulated and is required for G(1)/S checkpoint activation in response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 98, 13102–13107. https://doi.org/10.1073/pnas.231364598

    CAS Article PubMed PubMed Central Google Scholar 

  78. Primo, L. M. F., & Teixeira, L. K. (2019). DNA replication stress: Oncogenes in the spotlight. Genetics and Molecular Biology, 43, e20190138. https://doi.org/10.1590/1678-4685gmb-2019-0138

    Article PubMed PubMed Central Google Scholar 

  79. Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry, 78, 363–397. https://doi.org/10.1146/annurev.biochem.78.082307.091526

    CAS Article PubMed Google Scholar 

  80. Rodríguez-Paredes, M., & Lyko, F. (2019). The importance of non-histone protein methylation in cancer therapy. Nature Reviews. Molecular Cell Biology, 20, 569–570. https://doi.org/10.1038/s41580-019-0147-x

    CAS Article PubMed Google Scholar 

  81. Roos-Mattjus, P., et al. (2002). Genotoxin-induced Rad9-Hus1-Rad1 (9-1-1) chromatin association is an early checkpoint signaling event. The Journal of Biological Chemistry, 277, 43809–43812. https://doi.org/10.1074/jbc.M207272200

    CAS Article PubMed Google Scholar 

  82. Roos-Mattjus, P., et al. (2003). Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. The Journal of Biological Chemistry, 278, 24428–24437. https://doi.org/10.1074/jbc.M301544200

    CAS Article PubMed Google Scholar 

  83. Rundle, S., Bradbury, A., Drew, Y., & Curtin, N. J. (2017). Targeting the ATR-CHK1 axis in cancer therapy. Cancers. https://doi.org/10.3390/cancers9050041

    Article PubMed PubMed Central Google Scholar 

  84. Sato, K., et al. (2012). A DNA-damage selective role for BRCA1 E3 ligase in claspin ubiquitylation, CHK1 activation, and DNA repair. Current Biology: CB, 22, 1659–1666. https://doi.org/10.1016/j.cub.2012.07.034

    CAS Article PubMed Google Scholar 

  85. Shanmugam, I., et al. (2014). Ubiquitin-specific peptidase 20 regulates Rad17 stability, checkpoint kinase 1 phosphorylation and DNA repair by homologous recombination. The Journal of Biological Chemistry, 289, 22739–22748. https://doi.org/10.1074/jbc.M114.550459

    CAS Article PubMed PubMed Central Google Scholar 

  86. Shiotani, B. & Zou, L. (2009). ATR signaling at a glance. Journal of Cell Science, 122, 301–304. https://doi.org/10.1242/jcs.035105

  87. Shiotani, B., et al. (2013). Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Reports, 3, 1651–1662. https://doi.org/10.1016/j.celrep.2013.04.018

    CAS Article PubMed PubMed Central Google Scholar 

  88. Singh, M., Burrows, A. C., Torres, A. E., Pal, D., Stromberg, B., Insinna, C., Dickson, A., Westlake, C. J., Summers, M. K. (2019). The deubiquitinating enzyme USP37 stabilizes CHK1 to promote the cellular response to replication stress. bioRxiv 652891.

  89. Smith, J., Tho, L. M., Xu, N., & Gillespie, D. A. (2010). The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Advances in Cancer Research, 108, 73–112. https://doi.org/10.1016/b978-0-12-380888-2.00003-0

    CAS Article PubMed Google Scholar 

  90. Sørensen, C. S., & Syljuåsen, R. G. (2012). Safeguarding genome integrity: The checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Research, 40, 477–486. https://doi.org/10.1093/nar/gkr697

    CAS Article PubMed Google Scholar 

  91. Sun, J., Shi, X., Mamun, M. A. A., & Gao, Y. (2020). The role of deubiquitinating enzymes in gastric cancer. Oncology Letters, 19, 30–44. https://doi.org/10.3892/ol.2019.11062

    CAS Article PubMed Google Scholar 

  92. Sun, T., Liu, Z., & Yang, Q. (2020). The role of ubiquitination and deubiquitination in cancer metabolism. Molecular Cancer, 19, 146. https://doi.org/10.1186/s12943-020-01262-x

    Article PubMed PubMed Central Google Scholar 

  93. Surendran, S., Ononye, O. E., & Balakrishnan, L. (2016). Acetylation of replication protein A (RPA) improves its DNA binding property. The FASEB Journal.

  94. Swatek, K. N., & Komander, D. (2016). Ubiquitin modifications. Cell Research, 26, 399–422. https://doi.org/10.1038/cr.2016.39

    CAS Article PubMed PubMed Central Google Scholar 

  95. Ulrich, H. D., & Walden, H. (2010). Ubiquitin signalling in DNA replication and repair. Nature Reviews. Molecular Cell Biology, 11, 479–489. https://doi.org/10.1038/nrm2921

    CAS Article PubMed Google Scholar 

  96. Walter, J., & Newport, J. (2000). Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Molecular Cell, 5, 617–627. https://doi.org/10.1016/s1097-2765(00)80241-5

    CAS Article PubMed Google Scholar 

  97. Wan, J., Liu, H., Chu, J., & Zhang, H. (2019). Functions and mechanisms of lysine crotonylation. Journal of Cellular and Molecular Medicine, 23, 7163–7169. https://doi.org/10.1111/jcmm.14650

    Article PubMed PubMed Central Google Scholar 

  98. Wang, R. H., et al. (2014). SIRT1 deacetylates TopBP1 and modulates intra-S-phase checkpoint and DNA replication origin firing. International Journal of Biological Sciences, 10, 1193–1202. https://doi.org/10.7150/ijbs.11066

    CAS Article PubMed PubMed Central Google Scholar 

  99. Wang, X., et al. (2006). Rad17 phosphorylation is required for claspin recruitment and Chk1 activation in response to replication stress. Molecular Cell, 23, 331–341. https://doi.org/10.1016/j.molcel.2006.06.022

    CAS Article PubMed Google Scholar 

  100. Wang, X., et al. (2017). 3.9 Å structure of the yeast Mec1-Ddc2 complex, a homolog of human ATR-ATRIP. Science (New York, N.Y.), 358, 1206–1209. https://doi.org/10.1126/science.aan8414

    CAS Article Google Scholar 

  101. Wardlaw, C. P., Carr, A. M., & Oliver, A. W. (2014). TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair, 22, 165–174. https://doi.org/10.1016/j.dnarep.2014.06.004

    CAS Article PubMed Google Scholar 

  102. Wilhelm, T., Said, M., & Naim, V. (2020). DNA replication stress and chromosomal instability: Dangerous liaisons. Genes. https://doi.org/10.3390/genes11060642

    Article PubMed PubMed Central Google Scholar 

  103. Wilkinson, K. D. (2000). Ubiquitination and deubiquitination: Targeting of proteins for degradation by the proteasome. Seminars in Cell & Developmental Biology, 11, 141–148. https://doi.org/10.1006/scdb.2000.0164

    CAS Article Google Scholar 

  104. Wu, C. S., et al. (2014). SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes & Development, 28, 1472–1484. https://doi.org/10.1101/gad.238535.114

    CAS Article Google Scholar 

  105. Wu, W., et al. (2018). HERC2 facilitates BLM and WRN helicase complex interaction with RPA to suppress G-Quadruplex DNA. Cancer Research, 78, 6371–6385. https://doi.org/10.1158/0008-5472.Can-18-1877

    CAS Article PubMed Google Scholar 

  106. Xia, C., Tao, Y., Li, M., Che, T., & Qu, J. (2020). Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review). Experimental and Therapeutic Medicine, 20, 2923–2940. https://doi.org/10.3892/etm.2020.9073

    CAS Article PubMed PubMed Central Google Scholar 

  107. Yamane, K., Wu, X., & Chen, J. (2002). A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Molecular and Cellular Biology22, 555–566. https://doi.org/10.1128/mcb.22.2.555-566.2002

  108. Yang, C. C., Kato, H., Shindo, M., & Masai, H. (2019). Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells. eLife. https://doi.org/10.7554/eLife.50796

    Article PubMed PubMed Central Google Scholar 

  109. Yang, J., et al. (2004). ATM and ATR: Sensing DNA damage. World Journal of Gastroenterology, 10, 155–160. https://doi.org/10.3748/wjg.v10.i2.155

    CAS Article PubMed PubMed Central Google Scholar 

  110. Yang, X. H., & Zou, L. (2006). Recruitment of ATR-ATRIP, Rad17, and 9-1-1 complexes to DNA damage. Methods in Enzymology, 409, 118–131. https://doi.org/10.1016/s0076-6879(05)09007-5

    CAS Article PubMed Google Scholar 

  111. Yang, Y., et al. (2017). Protein SUMOylation modification and its associations with disease. Open Biology. https://doi.org/10.1098/rsob.170167

    Article PubMed PubMed Central Google Scholar 

  112. Yazinski, S. A., & Zou, L. (2016). Functions, regulation, and therapeutic implications of the ATR checkpoint pathway. Annual Review of Genetics, 50, 155–173. https://doi.org/10.1146/annurev-genet-121415-121658

    CAS Article PubMed Google Scholar 

  113. Young, M. J., Hsu, K. C., Lin, T. E., Chang, W. C., & Hung, J. J. (2019). The role of ubiquitin-specific peptidases in cancer progression. Journal of Biomedical Science, 26, 42. https://doi.org/10.1186/s12929-019-0522-0

    Article PubMed PubMed Central Google Scholar 

  114. Yu, H., et al. (2020). Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination-mediated DNA repair. Sci Adv. https://doi.org/10.1126/sciadv.aay4697

    Article PubMed PubMed Central Google Scholar 

  115. Yu, X., et al. (2020). Ubiquitination of the DNA-damage checkpoint kinase CHK1 by TRAF4 is required for CHK1 activation. Journal of Hematology & Oncology, 13, 40. https://doi.org/10.1186/s13045-020-00869-3

    CAS Article Google Scholar 

  116. Yu, X., Chini, C. C., He, M., Mer, G., & Chen, J. (2003). The BRCT domain is a phospho-protein binding domain. Science (New York, N.Y.), 302, 639–642. https://doi.org/10.1126/science.1088753

    CAS Article Google Scholar 

  117. Yuan, J., et al. (2014). HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Research, 42, 13110–13121. https://doi.org/10.1093/nar/gku1034

    CAS Article PubMed PubMed Central Google Scholar 

  118. Zhang, D., Zaugg, K., Mak, T. W., & Elledge, S. J. (2006). A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell, 126, 529–542. https://doi.org/10.1016/j.cell.2006.06.039

    CAS Article PubMed Google Scholar 

  119. Zhang, H., et al. (2016). ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA-ssDNA. Cell Reports, 14, 1435–1447. https://doi.org/10.1016/j.celrep.2016.01.018

    CAS Article PubMed PubMed Central Google Scholar 

  120. Zhang, L., et al. (2010). Proteolysis of Rad17 by Cdh1/APC regulates checkpoint termination and recovery from genotoxic stress. The EMBO Journal, 29, 1726–1737. https://doi.org/10.1038/emboj.2010.55

    CAS Article PubMed PubMed Central Google Scholar 

  121. Zhao, M., et al. (2017). PCAF/GCN5-Mediated Acetylation of RPA1 Promotes Nucleotide Excision Repair. Cell reports, 20, 1997–2009. https://doi.org/10.1016/j.celrep.2017.08.015

    CAS Article PubMed Google Scholar 

  122. Zheng, N., Wang, Z., & Wei, W. (2016). Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. The International Journal of Biochemistry & Cell Biology, 73, 99–110. https://doi.org/10.1016/j.biocel.2016.02.005

    CAS Article Google Scholar 

  123. Zhou, L., et al. (2020). SUMOylation stabilizes hSSB1 and enhances the recruitment of NBS1 to DNA damage sites. Signal Transduction and Targeted Therapy, 5, 80. https://doi.org/10.1038/s41392-020-0172-4

    CAS Article PubMed PubMed Central Google Scholar 

  124. Zhu, M., Zhao, H., Liao, J., & Xu, X. (2014). HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability. Nucleic Acids Research, 42, 13074–13081. https://doi.org/10.1093/nar/gku978

    CAS Article PubMed PubMed Central Google Scholar 

  125. Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science (New York, N.Y.), 300, 1542–1548. https://doi.org/10.1126/science.1083430

    CAS Article Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from National Natural Science Foundation(32070713 to J.Y., 82002985 to Y.P.C., 32090032 to J.Y.), Shanghai Pujiang program(2020PJD070 to Y.P.C.) and China Postdoctoral Science Foundation (2020M681384 to Y.P.C.).

Author information

Affiliations

  1. Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, School of Life Sciences and Technology, Shanghai, 200120, China

    Yuping Chen

  2. Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China

    Yuping Chen & Jian Yuan

  3. Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200120, China

    Yuping Chen & Jian Yuan

Corresponding author

Correspondence to Jian Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, Y., Yuan, J. The post translational modification of key regulators of ATR signaling in DNA replication. GENOME INSTAB. DIS. 2, 92–101 (2021). https://doi.org/10.1007/s42764-021-00036-z

Download citation

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Post-translational modification

  • ATR pathway

  • DNA replication

  • DNA replication stress


About this journal

Electronic ISSN
2524-7662
Abstracted and indexed in
  1. CNKI
  2. Dimensions
  3. EBSCO Discovery Service
  4. Google Scholar
  5. Institute of Scientific and Technical Information of China
  6. Meta
  7. Naver
  8. OCLC WorldCat Discovery Service
  9. ProQuest-ExLibris Primo
  10. ProQuest-ExLibris Summon
  11. TD Net Discovery Service
Copyright information

Rights and permissions

Springer policies

© Shenzhen University School of Medicine; Fondazione Istituto FIRC di Oncologia Molecolare

×

用户登录